Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Ping-Hsin Huang, ${ }^{\text {a,b }} *$ Tai-Hsiang Huang, ${ }^{\text {a }}$ Jiun-Yi Shen ${ }^{\text {a }}$ and Yuh-Sheng Wen ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan, and ${ }^{\mathbf{b}}$ Kang-Ning Junior College of Medical Care and Management, Taipei, Taiwan 114<br>Correspondence e-mail:<br>pshuang@webmail.knjc.edu.tw

## Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.036$
$w R$ factor $=0.092$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]$\qquad$

## 2,8-Bis(diphenylamino)-5H-5 $\lambda^{6}$-dibenzo[b,d]thiophene 5,5-dioxide

In the title compound, $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, the two benzene rings fused to the thiophene ring form a dihedral angle of $8.78(8)^{\circ}$. In the crystal structure, there are no significant hydrogenbonding interactions or $\pi-\pi$ stacking interactions between molecules.

## Comment

The application of organic electroluminescent devices (OELD) in flat-panel displays using small organic molecules or organic polymers has been intensively pursued following the reports by the Kodak team (Tang et al., 1987) and the Cambridge group (Burroughes et al., 1990). The title compound, (I), was synthesized by the condensation of a dione (scheme) with diphenylamine and it can be used as an $n$-type OELD (Huang et al., 2006). The molecular structure is shown in Fig. 1.

(I)

The dihedral angles between the plane of the dibenzothiophene $S, S$-dioxide ( $P 1$ ) and the four terminal phenyl rings ( $P 2, P 3, P 4$ and $P 5$; see Fig. 1 for ring definitions) are 83.15 (8), 55.49 (8), 51.60 (8) and 64.35 ( 8$)^{\circ}$, respectively. The dihedral angles are $72.21(8)$ and $70.35(8)^{\circ}$ for $P 2 / P 3$ and $P 4 / P 5$, respectively.

## Experimental

A two-necked round-bottomed flask was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( $1 \mathrm{mmol} \%$ per halogen atom), $t$ - BuONa ( 1.2 equivalents per halogen atom), 2,8-dibromo-5,5-dioxo-5 H - $5 \lambda^{6}$-dibenzothiophene ( 5 mmol ), and diphenylamine ( 2 equivalents per halogen atom). Dry toluene $(50 \mathrm{ml})$ was added and the mixture was stirred under nitrogen for 10 min . Tri-tert-butylphosphine ( $2 \mathrm{mmol} \%$ ) in dry toluene was added via a syringe (the stock solution contained 1.0 mmol of the phosphine in 1 ml of dry toluene). The reaction mixture was heated at 353 K for 16 h . After cooling, the mixture was diluted with diethyl ether and the organic phase was washed with water and brine. After drying over $\mathrm{MgSO}_{4}$ and removal of the volatiles, the residue was purified by column chromatography using ethyl acetate/hexanes (1:9) as eluant, followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH (2:1). The compound was obtained as a pale-yellow solid in $53 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.97\left(d d, 2 \mathrm{H}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{3}\right), 7.06-7.12(m$, $14 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}$, ortho-, para- $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 7.24-7.29 ( $\mathrm{m}, 8 \mathrm{H}$, meta- $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 7.55 ( $d$,

Received 25 January 2006
Accepted 6 March 2006
$\left.2 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{3}\right)$. FAB MS (m/e): $550\left(M^{+}\right)$Analysis calculated for $\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C} 78.52, \mathrm{H} 4.76, \mathrm{~N} 5.09 \%$; found: C 78.09, H 4.42, N 5.12\%.

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \\
& M_{r}=550.65 \\
& \text { Monoclinic, } P 2_{\mathrm{H}} / n \\
& a=9.8988(2) \AA \AA^{2} \\
& b=19.3898(4) \AA \\
& c=14.4606(3) \AA \\
& \beta=93.86(1)^{\circ} \\
& V=2769.19(10) \AA^{3} \\
& Z=4 \\
& D_{x}=1.321 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: none
40230 measured reflections
4880 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.092$
$S=1.04$
4880 reflections
371 parameters
H -atom parameters constrained
$D_{m}$ measured by not measured
Mo $K \alpha$ radiation
Cell parameters from 6419 reflections
$\theta=2.6-30.9^{\circ}$
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=100$ (1) K
Prism, yellow
$0.3 \times 0.22 \times 0.18 \mathrm{~mm}$

4135 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.032
$$

$$
\theta_{\max }=25.0^{\circ}
$$

$$
h=-11 \rightarrow 11
$$

$$
k=-23 \rightarrow 23
$$

$$
l=-17 \rightarrow 17
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0394 P)^{2}\right. \\
& +1.6477 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.45 \mathrm{e}^{\circ}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.38 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0015 \text { (4) }
\end{aligned}
$$

H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:


Figure 1
The molecular structure of (I), showing $30 \%$ probability displacement ellipsoids and the atom-numbering scheme.

ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: $\operatorname{WinGX}$ (Farrugia, 1999).

This work is supported by the Kang-Ning Junior College of Medical Care and Management and the Institute of Chemistry, Academia Sinica.

## References

Bruker (2001). SMART and SAINT (APEX2 Version 1.0-27) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L. \& Holmes, A. B. (1990). Nature (London), 347, 539-541.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Huang, T.-H., Whang, W.-T., Shen, J. Y., Wen, Y.-S., Lin, J. T. \& Wu, C.-C. (2006). Adv. Mater. Accepted.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tang, C. W. \& Van Slyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.


[^0]:    © 2006 International Union of Crystallography All rights reserved

